Abstract
Individual detrital apatite grains from the Esplanade, Coconino, and Moenkopi Formations in the Grand Canyon region of the Colorado Plateau yield (U-Th)/He dates from 104 to 5 Ma. The range of dates within each unit far exceeds analytical uncertainty, but correlates with both He concentration [He] and effective U concentration [eU]. These dates are all signifi cantly younger than the sandstone units, indicating partial to complete He loss following deposition. Recently published laboratory diffusion data suggest that He retentivity in apatite increases with radiation damage. Forward models predict that the consequences of this effect will be manifested most clearly as a correlation between (U-Th)/He dates and the [He] and [eU] in suites of apatites that (1) are characterized by a large span of [eU], and (2) had thermal histories in which suffi cient time elapsed for the apatite He diffusion kinetics to diverge prior to reheating and partial resetting. Apatites in the sedimentary units investigated fi t these cri teria. Using geologically reasonable deposition, burial, and unroofi ng histories, simulations that include the effect of radiation damage on apatite He retentivity can reproduce the observed distributions of apatite dates and correlations with parent and daughter concentrations. These results suggest that a span of (U-Th)/He dates positively correlated with [eU] may provide important information regarding a sample’s thermal history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.