Abstract

A novel approach is developed for preparing a highly porous super absorbent hydrogel (SAH). Synthetic and natural hydrogel based acrylamide (Am) and gelatin (G) were polymerized and crosslinked by gamma radiation. Three hydrogels compositions have been prepared in weight ratio 1:2, 1.5:1.5 and 2:1 (wt:wt) for 30% PAAM/G and exposed to gamma radiation at dose of 30 kGy. The effect of chemical modifications on increasing the swelling power of polyacrylamide gelatin (PAAM/G) has been evaluated. The alkaline hydrolysis of PAAM/G hydrogel with concentrated NaOH converts amid groups CONH2 to carboxylic groups COONa. The modified hydrogels will take the codes PAAM-COOH/G, PAAM-COONa/G and PAAM-COOK/G that dramatically increased the degree of swelling from 220 to 720 (g/g). Furthermore, studies on the slow release ability of three kinds of fertilizer (K, P and urea) loaded on modified PAAM-COOH/G and evaluated the ability of SAH hydrogels to absorb and then gradually release water and fertilizer. A mathematical model for fertilizer release from PAAM-COOK/G was applied to calculate the diffusion coefficient D. The main aim of this article is performed the effect of soil amendment with PAAM-COOK/G on eliminating water stress was tested for bean plant (Vicia faba) irrigation cycles in drought-prone environments. The growth of bean plant was monitored by measuring the highest and size of leaves and bean seed. The effect of water stress was monitored also, by measuring the intensity of chlorophyll for both SAH and control soil. The results indicated that the chemical modification of (PAAM/G) into (PAAM-COOK/G) could greatly improve water absorbency. The experimental data indicated that the SAH has a positive effect to use as fertilizers carrier and soil conditioner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call