Abstract

In order to utilize the psyllium husk, a medicinally important natural polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared psyllium and polyacrylic acid based polymeric networks by radiation-induced crosslinked copolymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR and swelling studies. Swelling behavior of the hydrogels was studied as a function of monomer concentration in the hydrogels and temperature, pH and [NaCl] of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anticancer model drug 5-fluorouracil from the hydrogels for the evaluation of swelling and drug release mechanisms. It has been observed from the release dynamics of drug that diffusion exponent ‘ n’ have 0.7, 0.8 and 0.7 values and gel characteristics constant ‘ k’ have 9.13 × 10 −3, 6.22 × 10 −3 and 9.01 × 10 −3 values for the release of 5-fluorouracil, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The values of the diffusion exponent show that the release of drug from drug-loaded hydrogels has occurred through Non-Fickian diffusion mechanism. It has also been observed from the swelling and release of drug in the different pH buffer that the polymer matrix is pH responsive and can be exploited for the delivery of anticancer drug to the colon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call