Abstract
We study spectral theory for the Schrödinger operator on manifolds possessing an escape function. A particular class of examples are manifolds with Euclidean and/or hyperbolic ends. Certain exterior domains for possibly unbounded obstacles are included. We prove Rellich's theorem, the limiting absorption principle, radiation condition bounds and the Sommerfeld uniqueness result, striving to extending and refining previously known spectral results on manifolds. The proofs are given by an extensive use of commutator arguments. These arguments have a classical spirit (essentially) not involving energy cutoffs or microlocal analysis and require, presumably, minimum regularity and decay properties of perturbations. This paper has interest of its own right, but it also serves as a basis for the stationary scattering theory developed fully in the sequel [19].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.