Abstract

The three-dimensional structure of proteins, especially as determined by X-ray crystallography, is critical to the understanding of their function. However, the X-ray exposure may lead to damage that must be recognized and understood to interpret the crystallographic results. This is especially relevant for proteins with transition metal ions that can be oxidized or reduced. The detailed study of proteins in aqueous solution by the technique of pulse radiolysis has provided a wealth of information on the production and fate of radicals that are the same as those produced by X-ray exposure. The results reviewed here illustrate how the products of the interaction of radiation with water or with solutes added to the crystallization medium, and with proteins themselves, are formed, and about their fate. Of particular focus is how electrons are produced and transferred through the polypeptide matrix to redox centers such as metal ions or to specific amino acid residues, for example, disulfides, and how the hydroxyl radicals formed may be converted to reducing equivalents or scavenged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call