Abstract

AbstractThe role of intermediate phases in CeO2 mesocrystal formation from aqueous CeIII solutions subjected to γ‐radiation was studied. Radiolytically formed hydroxyl radicals convert soluble CeIII into less soluble CeIV. Transmission electron microscopy (TEM) and X‐ray diffraction studies of samples from different stages of the process allowed the identification of several stages in CeO2 mesocrystal evolution following the oxidation to CeIV: (1) formation of hydrated CeIV hydroxides, serving as intermediates in the liquid‐to‐solid phase transformation; (2) CeO2 primary particle growth inside the intermediate phase; (3) alignment of the primary particles into “pre‐mesocrystals” and subsequently to mesocrystals, guided by confinement of the amorphous intermediate phase and accompanied by the formation of “mineral bridges”. Further alignment of the obtained mesocrystals into supracrystals occurs upon slow drying, making it possible to form complex hierarchical architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.