Abstract

We have studied injection lasers based on InGaAs/GaAs vertically coupled quantum dots (QD) grown by molecular beam epitaxy. The threshold current density decreases by one order of magnitude down to 90 A cm−2(300 K) with an increase of the number of QD stacks (N) up to 10. ForN≥ 3 lasing occurs via the QD ground state up to room temperature. Differential efficiency increases withNup to 50%. No change in range of high temperature stability of threshold current density (Jth) was observed, while the characteristic temperature (T0) measured at 300 K increases from 60 to 120 K. Using InGaAs-AlGaAs QD with higher localization energy allowed us to decreaseJthdown to 60 A cm−2and to increase the differential efficiency up to 70%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.