Abstract

We propose a general covariant method for regularizing the radiation back-reaction in linear and nonlinear field theory models with singular sources. Typical examples of such sources are the currents produced by extended relativistic objects (branes). As an illustration, we consider the models of minimal and nonminimal coupling of a brane to an n-form gauge field, a scalar field, and the Einstein gravity field. We find the structure of divergent and finite contributions due to the radiation back-reaction and obtain relations for the parameters of the theory ensuring cancellation of divergences. We prove that the divergences are Lagrangian n the case where the metric induced on the brane surface is nondegenerate. We find special types of a (nonminimal) coupling leading to local and Lagrangian effective equations of motion of the brane. We show that the requirement for classical renormalizability imposes strong restrictions on the self-coupling vertices of the field, similar to the quantum renormalizability conditions. In particular, we establish the nonrenormalizability of the gravitational self-coupling of a codimension-(k>2) brane, whereas for k ≤ 2, the theory becomes not only renormalizable but also finite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.