Abstract

The radiation and scattering pattern characteristics of open-ended rectangular waveguide with a chamfered tip are examined. Despite common and widespread use as a probe antenna for planar near-field antenna measurements, a methodical investigation of the chamfered-tip design and resultant performance has not been published. A computational electro magnetics (CEM) model for an open-ended rectangular waveguide probe with a parameterized chamfered tip has been constructed and results for both radiation and scattering patterns are presented. A comparison of results includes a probe without a chamfer and a probe typical of that available from commercial suppliers. It is shown that, for a series of standard waveguide size probes sharing a common thickness for the waveguide wall and chamfered tip, the radiation pattern is relatively insensitive to the chamfer tip designs studied until frequency increases into W-band (WR-10). The scattering pattern characteristics for the same series of standard waveguide size probes show a reduction in on-axis (boresight) monostatic radar cross section (RCS) for chamfered tip waveguides compared to blunt-ended waveguides and that this reduction increases for increasing frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.