Abstract

In existence of the velocity slip model, suction/injection, and heat source/sink, the boundary layer flow near a stagnation-point over a heated stretching sheet in a porous medium saturated by a nanofluid, with effect of the thermal radiation and magnetic field, has been studied. The governing system of partial differential equations was transformed into a system of nonlinear ordinary equations using the appropriate similarity transforms. Then, the obtained system has been numerically solved by the Chebyshev pseudospectral differentiation matrix (ChPDM) approach. It was found that, at some special cases, the current results are in a very good agreement with those presented in the literature. In addition, the flow velocity, surface shear stress, temperature, and concentration are strongly influenced on applying the slip model, which is, therefore, extremely important to predict the flow characteristics accurately in the nanofluid mechanics. It was proved that this velocity slip condition is mandatory and should be taken into account in nanoscale research; otherwise, false results and a spurious physical sight are to be gained. Further, it was deduced that the influence of the stream velocity and shear stress reaches very rapidly the stable manner for both cases of the velocity ratio. However, when this ratio is equal to one, the skin friction coefficient, reduced Nusselt number, and reduced Sherwood number are constant and equal to zero, 0.721082, and 3.06155, respectively. Furthermore, it was proved that the reduced Nusselt number decreases with increase of Brownian motion and thermophoresis; has a very weak effect on increasing Lewis number; increases with increase of Prandtl number; and is higher in the cases of suction, velocity ratio > 1 and heat source in comparison with injection, velocity ratio < 1, and heat sink, respectively. Moreover, the reduced Sherwood number increases with increase of Brownian motion, thermophoresis, and Lewis number; decreases with increase of Prandtl number; is higher in the cases of suction and velocity ratio > 1 in comparison with injection and velocity ratio < 1, respectively; and is approximately the same in the heat source and heat sink cases. Finally, it was shown that the most effective region for radiation effect is[0,1].

Highlights

  • IntroductionThe problem of flow and heat transfer in boundary layer over a stretching surface has attracted many researchers because of its numerous applications, for example, in metallurgical processes, such as drawing of continuous filaments through quiescent fluids, annealing and tinning of copper wires, glass blowing, manufacturing of plastic and rubber sheets, crystal growing, and continuous cooling and fiber spinning

  • The obtained system has been numerically solved by the Chebyshev pseudospectral differentiation matrix (ChPDM) approach

  • Suction/injection and heat source/sink flow near a stagnation-point over a heated stretching sheet in a porous medium saturated by a nanofluid, with effect of thermal radiation and magnetic field in the presence of the velocity slip model, have been studied

Read more

Summary

Introduction

The problem of flow and heat transfer in boundary layer over a stretching surface has attracted many researchers because of its numerous applications, for example, in metallurgical processes, such as drawing of continuous filaments through quiescent fluids, annealing and tinning of copper wires, glass blowing, manufacturing of plastic and rubber sheets, crystal growing, and continuous cooling and fiber spinning. There are wide-ranging applications in many engineering processes, such as polymer extrusion, wire drawing, continuous casting, manufacturing of foods and paper, glass fiber production, and stretching of plastic films. Mathematical Problems in Engineering with the desired characteristics strictly depends upon the stretching rate, the rate of cooling in the process, and the process of stretching. Many researchers have focused on modeling the thermal conductivity and examined different types of nanofluids’ viscosity (see [1, 2])

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call