Abstract

Analysis was performed to estimate radiation levels during removal and packaging of the highly-enriched uranium core of the JM-1 SLOWPOKE-2 research reactor. Due to severe limitations of space in and around the reactor pool, the core could not be removed in the conventional manner as was done for previous SLOWPOKE defuelling operations. A transfer shield, with a balance between shielding efficacy, volume and weight was designed. Fuel depletion, Monte Carlo shielding and criticality calculations were performed. Comparisons of measured and calculated dose rates as well as results of the criticality safety assessment are presented. The designed transfer shield reduced the calculated unshielded dose rate from 29Sv/h to 8mSv/h. The maximum calculated effective neutron multiplication factor of approximately 0.89 was below the 0.91 upper subricital limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.