Abstract

In this paper we are consider radiating solitary wave solutions of coupled regularised Boussinesq equations. This type of solution consists of a leading solitary wave with a small-amplitude co-propagating oscillatory tail, and emerges from a pure solitary wave solution of a symmetric reduction of the full system. We construct an asymptotic solution, where the leading order approximation in both components is obtained as a particular solution of the regularised Boussinesq equations in the symmetric case. At the next order, the system uncouples into two linear non-homogeneous ordinary differential equations with variable coefficients, one correcting the localised part of the solution, which we find analytically, and the other describing the co-propagating oscillatory tail. This latter equation is a fourth-order ordinary differential equation and is solved approximately by two different methods, each exploiting the assumption that the leading solitary wave has a small amplitude, and thus enabling an explicit estimate for the amplitude of the oscillating tail. These estimates are compared with corresponding numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.