Abstract

This paper presents numerical results of radiated acoustic pressures from a moving, nonuniformly vibrating cylinder with two spherical endcaps, based on an extended Kirchhoff integral formulation. Specifically, we consider cases in which the normal component of the surface velocity is nonzero on a portion of the surface, and zero elsewhere. Numerical results demonstrate that the radiation patterns depend critically on the frequency and source dimensions. For a noncompact source, the strongest radiation may not necessarily stem from a vibrating surface, but rather from a nonvibrating surface due to the effect of sound diffraction. The more noncompact the source is, the larger the number of side lobes in the near field and the more concentrated these side lobes will be. In the far field, however, the side lobes become smeared and less distinguishable. In other words, the effect of sound diffraction is greatly reduced in the far field. Source translational motion induces sound radiation in the perpendicular direction and enhances the radiated acoustic field in general. Enhancement in the forward direction is much greater than in the reverse direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call