Abstract

Vector vortices with spatially varying polarization are interesting phenomena and have motivated many recent studies. A vector vortex in the wavefield of a surface plasmon polariton (SPP) may be extended to the sub-wavelength scale, which would be more significant. However, the formation of vector vortices requires the polarization state to possess components parallel to the surface of metal films. In this study, we generated radially polarized vector plasmonic vortices using the metasurface spiral of orthogonal nanoslit pairs. We theoretically derived the x and y component expressions in the central point area of the spiral and obtained a doughnut-shaped intensity distribution with radial polarization. The Jones matrix of the metasurface spiral was generated to describe the polarization characteristics. The results were validated by performing finite-difference time-domain simulations. In addition, we used a Mach-Zehnder interferometer system to extract the intensity and phase distributions of different components of the SPP field. The experimental doughnut-shaped radially polarized vector vortex was consistent with the theoretical and simulated results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.