Abstract
Abstract The spatial and temporal densities of Weather Surveillance Radar-1988 Doppler (WSR-88D) raw radar radial wind represent a rich source of high-resolution observations for initializing numerical weather prediction models. A characteristic of these observations is the presence of a significant degree of redundant information imposing a burden on an operational assimilation system. Potential improvement in data assimilation efficiency can be achieved by constructing averages, called super-obs. In the past, transmission of the radar radial wind from each radar site to a central site was confined to data feeds that filter the resolution and degrade the precision. At the central site, super-obs were constructed from this data feed and called level-3 super-obs. However, the precision and information content of the radial wind can be improved if data at each radar site are directly utilized at the highest resolution and precision found at the WSR-88D radar and then transmitted to a central site for processing in assimilation systems. In addition, with data compression from using super-obs, the volume of data is reduced, allowing quality control information to be included in the data transmission. The super-ob product from each WSR-88D radar site is called level-2.5 super-obs. Parallel, operational runs and case studies of the impact of the level-2.5 radar radial wind super-ob on the NCEP operational 12-km Eta Data Assimilation System (EDAS) and forecast system are compared with Next-Generation Weather Radar level-3 radial wind super-obs, which are spatially filtered and delivered at reduced precision. From the cases studied, it is shown that the level-3 super-obs make little or no impact on the Eta data analysis and subsequent forecasts. The assimilation of the level-2.5 super-ob product in the EDAS and forecast system shows improved precipitation threat scores as well as reduction in RMS and bias height errors, particularly in the upper troposphere. In the few cases studied, the predicted mesoscale precipitation patterns benefit from the level-2.5 super-obs, and more so when greater weight is given to these high-resolution/precision observations. Direct transmission of raw (designated as level 2) radar data to a central site and its use are now imminent, but this study shows that the level-2.5 super-ob product can be used as an operational benchmark to compare with new quality control and assimilation schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.