Abstract

During automotive urban driving conditions and future homologation cycles, automotive radial turbines experience transient conditions, whereby the same operate at very high blade speed ratios and, thus, at very low power outputs. Under those conditions, the turbine power output might not be enough to feed the mechanical power needs of the compressor. Typical fast one-dimensional full engine simulations rely on steady-state performance maps to characterize the turbocharger. Due to the restricting compressor braking power, extreme off-design measurements cannot be obtained in standard gas stands without using an external brake instead of the compressor or without using a motor attached to the turbocharger shaft. Such turbocharger assemblies cause shaft balancing issues inherent to the connection to a brake operating at high rotational speeds or need basic changes of the turbocharger geometry. This paper presents a novel approach for turbine performance map measurements at very low expansion ratio and very low mass flow without the aforementioned issues. The method uses the turbocharger compressor as a centrifugal turbine, providing mechanical power to the shaft and enabling turbine performance measurements from points of very high expansion ratio up to very low pressure ratio. It is even possible to measure at almost zero flow rate in the turbine when it consumes shaft power instead of producing it. This experimental procedure that can be applied to whatever turbocharger produces valuable information for the development and validation of turbine performance models aiming to extrapolate its behaviour at off-design conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call