Abstract
High density (≥6 × 1019 m−3), low temperature (2–6 eV) helicon discharges in the Prototype Material Plasma Exposure eXperiment (Proto-MPEX) are analyzed with the coupled multifluid plasma, kinetic neutrals code B2.5-Eirene. The interpretative analyses are constrained by data from multiple diagnostics, including Langmuir probes, Mach probes, filterscopes, infrared TV system, Thomson scattering, and baratrons. The objectives of the transport simulations include: investigation of the effects of heating, fueling, and plasma production; pumping, and assumed radial transport models on the calculated density and temperature distributions; plasma flow profiles and power balance. The primary objective in this report is to investigate the effects of the radial transport model in full plasma (the entire length of the plasma column in Proto-MPEX) data-constrained simulations. Results from three assumed forms of the radial transport coefficients are presented, including spatially constant, radially decreasing, and Bohm (D,χ ∼ Te/|B|). The results from each of the three transport coefficient sets agree qualitatively with the core (near axis) data. With the implicit Te dependence, the Bohm coefficients tend to decrease as functions of radius, although not as strongly as the centrally peaked set. The axial variation in the Bohm coefficients is largely due to the axial structure of the magnetic field. The agreement of the simulations and the diagnostic data with the Bohm set indicates that transport in the plasma column of Proto-MPEX is dominated by Bohm diffusion.High density (≥6 × 1019 m−3), low temperature (2–6 eV) helicon discharges in the Prototype Material Plasma Exposure eXperiment (Proto-MPEX) are analyzed with the coupled multifluid plasma, kinetic neutrals code B2.5-Eirene. The interpretative analyses are constrained by data from multiple diagnostics, including Langmuir probes, Mach probes, filterscopes, infrared TV system, Thomson scattering, and baratrons. The objectives of the transport simulations include: investigation of the effects of heating, fueling, and plasma production; pumping, and assumed radial transport models on the calculated density and temperature distributions; plasma flow profiles and power balance. The primary objective in this report is to investigate the effects of the radial transport model in full plasma (the entire length of the plasma column in Proto-MPEX) data-constrained simulations. Results from three assumed forms of the radial transport coefficients are presented, including spatially constant, radially decreasing, and Boh...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.