Abstract

In this paper, by introducing a relativistic Schrödinger tempered fractional p-Laplacian operator (–Δ)p,λs,m, based on the relativistic Schrödinger operator (–Δ + m2)s and the tempered fractional Laplacian (Δ + λ)β/2, we consider a relativistic Schrödinger tempered fractional p-Laplacian model involving logarithmic nonlinearity. We first establish maximum principle and boundary estimate, which play a very crucial role in the later process. Then we obtain radial symmetry and monotonicity results by using the direct method of moving planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call