Abstract

We present a subgradient method for minimizing nonsmooth, non-Lipschitz convex optimization problems. The only structure assumed is that a strictly feasible point is known. We extend the work of Renegar [SIAM J. Optim., 26 (2016), pp. 2649--2676] by taking a different perspective, leading to an algorithm which is conceptually more natural, has notably improved convergence rates, and for which the analysis is surprisingly simple. At each iteration, the algorithm takes a subgradient step and then performs a line search to move radially towards (or away from) the known feasible point. Our convergence results have striking similarities to those of traditional methods that require Lipschitz continuity. Costly orthogonal projections typical of subgradient methods are entirely avoided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.