Abstract

BackgroundIndicators obtained from the analysis of the radial pulse wave allow an indirect evaluation of the interaction between cardiac ejection and arterial walls.ObjectivesTo analyze the characteristics of the arterial pulse in young elite athletes through a cross-sectional observational study.MethodsWe evaluated the radial pulse wave in 35 high performance young male athletes, who practice various sports, comparing them with 36 healthy men of similar ages, using the applanation tonometry technique. We computed conventional indicators of central increase in central pressure and aortic propagation velocity, and added two new indicators: the slope of the increase in radial pressure and the amplitude of the oscillatory component during diastole.ResultsIn relation to controls, athletes exhibited lower heart rate (61.6 ± 9.1 vs. 71.4 ± 10.6 bpm, p < 0.001), lower pulse wave velocity (7.0 ± 1.0 vs. 7.5 ± 0.8 m/s, p < 0.001), lower diastolic blood pressure (67.6 ± 8.2 vs. 78.5 ± 7.3 mmHg, p < 0.001) and higher brachial pulse pressure (53.6 ± 8.3 vs. 46.7 ± 7.1 mmHg, p < 0.001). The systolic slope (0.70 ± 0.15 vs. 0.59 ± 0.13 mmHg/ms, p < 0.001) and the amplitude of diastolic oscillation (25.7 ± 6.4 vs. 18.4 ± 4.7%, p < 0.001) were significantly higher in athletes than in controls.ConclusionYoung athlete presented low aortic velocity, but significantly higher systolic slope and diastolic oscillation amplitude than controls. The steeper systolic slope and the lower diastolic blood pressure could underlie a higher stroke volume and a lower peripheral resistance respectively. The greater diastolic oscillation could be the consequence of the eccentric remodeling and increased compliance of the distal arteries, in response to intense training. We propose new pulse wave parameters obtained from the analysis of the radial waveform for the assessment of the cardiovascular adaptation to intense training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.