Abstract

Two-equation turbulence models based on the Boussinesq eddy viscosity hypothesis that have been used in the vast majority of previous simulation studies on bubbly pipe flows contain a term which renders the radial pressure distribution non-constant. In single phase simulations this effect is invariably absorbed in the definition of a modified pressure, from which the real pressure may be recovered if necessary. For bubbly multiphase flows however, this is not possible since the bubbles experience a force which depends, of course, on the real pressure rather than the modified one. As it turns out, most software codes by default rely on the approximation of neglecting the difference between modified and real pressure for bubbly flows. The purpose of the present study is to assess the influence of this approximation on the final simulations results. Fortunately it turns out that at least for the conditions considered in this study, the error is small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.