Abstract

Radial n-i-p structure silicon nanowire (SiNW)-based microcrystalline silicon thin-film solar cells on stainless steel foil was fabricated by plasma-enhanced chemical vapor deposition. The SiNW solar cell displays very low optical reflectance (approximately 15% on average) over a broad range of wavelengths (400 to 1,100 nm). The initial SiNW-based microcrystalline (μc-Si:H) thin-film solar cell has an open-circuit voltage of 0.37 V, short-circuit current density of 13.36 mA/cm2, fill factor of 0.3, and conversion efficiency of 1.48%. After acid treatment, the performance of the modified SiNW-based μc-Si:H thin-film solar cell has been improved remarkably with an open-circuit voltage of 0.48 V, short-circuit current density of 13.42 mA/cm2, fill factor of 0.35, and conversion efficiency of 2.25%. The external quantum efficiency measurements show that the external quantum efficiency response of SiNW solar cells is improved greatly in the wavelength range of 630 to 900 nm compared to the corresponding planar film solar cells.

Highlights

  • Solar power as the richest clean energy is the most favorable substitution for biochemical energy resource, which would be exhausted in decades

  • We present silicon nanowire (SiNW)-based microcrystalline thin-film solar cells on flexible stainless steel substrates

  • Methods n-SiNW synthesis The indium nanoparticles as metal catalysts were fabricated by hydrogen plasma treatment on the indium tin oxide (ITO)-coated substrates [17], and the n-type SiNW growth is performed under plasma-enhanced chemical vapor deposition (PECVD) using SiH4 + PH3 as the precursor gas and H2 as the carrier gas [18]

Read more

Summary

Introduction

Solar power as the richest clean energy is the most favorable substitution for biochemical energy resource, which would be exhausted in decades. Finding an effective and low-cost approach to harness solar energy is a key step to resolve the energy crisis [1]. Silicon thin-film solar cell technologies are industrially proven, environmentally friendly, and without fundamental limitation in material supply. The conflict between light absorption and photogenerated charge extraction makes planar silicon thin-film solar cells with comparatively low efficiencies [2]. Building radial junction thin-film solar cells on top of silicon nanowires (SiNWs) would enable a decoupling of the requirements for light absorption and carrier extraction into orthogonal spatial directions [3,4]. The SiNW-based thin-film solar cells would be a potential candidate for low-cost and high-efficiency solar cells

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.