Abstract

While it is currently thought that Earth's water was delivered by hydrous minerals, the origin of these minerals is still debated. Nebular models suggest that the area where the Earth formed was too hot for these minerals to form, leading many to believe that they were delivered by large planetary embryos which formed in the outer asteroid belt region of the solar nebula. Others have argued that the hydrous minerals were present during the early accretion phase of the Earth in order to explain different aspects of its geochemistry and therefore, must have formed locally, implying that the nebula must have been cooler than the models predict. In this paper we explore a new possibility: that these hydrous minerals were formed in the outer asteroid belt region of the solar nebula and were then brought into the hotter regions of the nebula by gas drag where they were incorporated into the planetesimals which formed there. The hydrated minerals were able to survive for long periods of time in this hot region due to the sluggish dehydration kinetics. We find that this process need not have been efficient, requiring only a small amount (∼few percentages) of the material in the outer asteroid belt region of the nebula to be subject to this process. This delivery mechanism provides a way for hydrous minerals to be incorporated early on into the planetesimals which were accreted by the Earth without having to alter the generally accepted solar nebula models that are consistent with meteoritic and asteroidal observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.