Abstract

Radially sampling of magnetic resonance imaging (MRI) is an effective way to accelerate the imaging. How to preserve the image details in reconstruction is always challenging. In this work, a deep unrolled neural network is designed to emulate the iterative sparse image reconstruction process of a projected fast soft-threshold algorithm (pFISTA). The proposed method, an unrolled pFISTA network for Deep Radial MRI (pFISTA-DR), include the preprocessing module to refine coil sensitivity maps and initial reconstructed image, the learnable convolution filters to extract image feature maps, and adaptive threshold to robustly remove image artifacts. Experimental results show that, among the compared methods, pFISTA-DR provides the best reconstruction and achieved the highest PSNR, the highest SSIM and the lowest reconstruction errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call