Abstract

Wurtzite (WZ) InP nanowires (NWs) with radial InP/InAsP quantum wells (QWs) having an arsenic composition in the rage of 0.43-0.60 were grown using metalorganic vapor phase epitaxy, and their optical properties were investigated. These InAsP QW layers with a high arsenic content and WZ crystal phase were successfully grown using WZ-InP NWs whose crystalline structure was controlled by sulphur doping. Photoluminescence (PL) of individual NWs with radial InP/InAsP QWs was clearly observed at room temperature. The PL wavelengths were successfully controlled by adjusting the radial QW thickness and arsenic composition of InAsP, and emissions in the 1.3-μm region were demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call