Abstract
Impact responses of extra-soft materials, such as ballistic gelatins and biological tissues, are increasingly in demand. The Kolsky bar is a widely used device to characterize high-rate behavior of materials. When a Kolsky bar is used to determine the dynamic compressive response of an extra-soft specimen, a spike-like feature often appears in the initial portion of the measured stress history. It is important to distinguish whether this spike is an experimental artifact or an intrinsic material response. In this research, we examined this phenomenon using experimental, numerical and analytical methods. The results indicate that the spike is the extra stress from specimen radial inertia during the acceleration stage of the axial deformation. Based on this understanding, remedies in both specimen geometry and loading pulse to minimize the artifact are proposed and verified, and thus capture the intrinsic dynamic behavior of the specimen material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.