Abstract

Resveratrol (Res) is a non-flavonoid polyphenol compound with biological pleiotropic properties, but low bioavailability limits its application value. Here, we synthesized a new Res derivative ((E)-5-(dimethylamino)-2-(4-methoxystyryl)phenol), and attempted to determine the function of Res derivative combined with radial extracorporeal shock wave therapy (rESWT) in chronic nonbacterial prostatitis (CNP). CNP model rats were constructed by subcutaneous administration of prostatein suspension (15mg/ml), followed by rESWT treatment alone or in associated with Res or Res derivatives. In this study, inflammatory cell infiltration and tissue fibrosis in the prostate tissues of CNP rats were significantly deteriorated, which was effectively abolished by rESWT treatment alone or in combination with Res or Res derivative. The expression of interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF), and nuclear factor kappa-B (NF-κB) were increased, while silent information regulator 1 (SIRT1) expression was suppressed in the prostate tissues of CNP rats, which were then rescued by rESWT treatment alone or in associated with Res or Res derivative. Importantly, compared with Res derivative treatment alone or rESWT combined with Res treatment, combination treatment with rESWT and Res derivative was more effective in alleviating inflammation and fibrosis, in reducing IL-1β, TNF-α, NGF, and SIRT1 expression, and in facilitating SIRT1 expression. Overall, rESWT combined with Res derivative treatment improved CNP in rat by reducing inflammation and fibrosis, which attributed to regulate the expression of SIRT1 and NF-κB. Thus, this work provides a theoretical basis for rESWT combined with Res derivative in the clinical treatment of CNP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.