Abstract
In this article we study some important properties of the radial epiderivatives for single-valued and set-valued maps. The relationships between this kind of a derivative and weak subdifferentials and directional derivatives in the single-valued non-convex case has been established. For optimization problems with a single-valued and a set-valued objective function, necessary and sufficient optimality conditions based on the concept of the radial epiderivatives are proved without convexity conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.