Abstract
The Er×B flow shear is simulated with a fully kinetic five-dimensional neoclassical Monte Carlo simulation for JET and ASDEX Upgrade plasma edge conditions. Here, Er is the radial electric field and B is the magnetic field. It is shown that high enough shear for turbulence suppression can be driven at the Low (L) to High (H) transition conditions by pure neoclassical effects including ion orbit losses. Simulations indicate higher threshold shear for ASDEX Upgrade than for JET. Shear values are compared to different models and experimental results of critical shear, and isotope effect on shear is discussed. Formation of an internal transport barrier in FT-2 in the presence of lower hybrid waves is also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.