Abstract

The Voyager 1 and 2 are only the two spacecraft that have arrived and passed through the heliospheric boundaries. Based on the plasma data from Voyager 2 spacecraft, the electron quasi-thermal noise (QTN) is investigated by using of the electron population model consisting of a core with Maxwellian distribution and a halo with kappa distribution. The power spectra of the electron QTN is calculated at different heliocentric distances from 1 AU to 110 AU. The parametric dependence of the QTN power spectra and the effective Debye length on the model parameters, such as the density ratio and temperature ratio of the halo to the core, kappa index and the antenna length, are discussed further. The results show that the electron QTN spectrum consists of a plateau in the low frequency band f < fpt, a prominent peak at the plasma frequency fpt, and a rapid decreasing part in the high frequency band f > fpt. The QTN plateau level basically falls down outwards until the termination shock crossing at about 84 AU, after which the plateau rebounds a little near the heliopause. Although the model parameters can be very variable, the QTN plateau level does not present more than the double change in a fairly wide range of the model parameters. The presented results can be useful for future deep-space explorations in the heliosphere and can provide valuable references for the design of onboard detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.