Abstract

The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. This study is performed by exploiting the multi-wavelength, from UV to sub-mm bands, DustPedia database, in addition to molecular (12CO) and atomic (HI) gas maps and metallicity abundance information available in the literature. We fitted the surface brightness profiles of the tracers of dust and stars, the mass surface density profiles of dust, stars, molecular gas, and total gas, and the SFR surface density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (alpha_CO) per galaxy by using dust and gas mass profiles. Although each galaxy has its own peculiar behaviour, we identified a common trend of the exponential scale-lengths vs. wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec^2 radius decrease from UV to 70 micron, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust mass surface density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 micron surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 micron scale-length tend to increase from earlier to later types, the scale-length at 70 micron tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 micron that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.