Abstract
Abstract. A time dependent radial diffusion model is used to quantify the competing effects of inward radial diffusion and losses on the distribution of the outer zone relativistic electrons. The rate of radial diffusion is parameterized by Kp with the loss time as an adjustable parameter. Comparison with HEEF data taken over 500 Combined Release and Radiation Effects Satellite (CRRES) orbits indicates that 1-MeV electron lifetimes near the peak of the outer zone are less than a day during the storm main phase and few days under less disturbed conditions. These values are comparable to independent estimates of the storm time loss rate due to scattering by EMIC waves and chorus emission, and also provide an acceptable representation of electron decay rates following the storm time injection. Although our radial diffusion model, with data derived lifetimes, is able to simulate many features of the variability of outer zone fluxes and predicts fluxes within one order of magnitude accuracy for most of the storms and L values, it fails to reproduce the magnitude of flux changes and the gradual build up of fluxes observed during the recovery phase of many storms. To address these differences future modeling should include an additional local acceleration source and also attempt to simulate the pronounced loss of electrons during the main phase of certain storms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.