Abstract
Knowledge of the vibrational properties of nanoparticles is of fundamental interest since it is a signature of their morphology, and it can be utilized to characterize their physical properties. In addition, the vibration characteristics of the nanoparticles coupled with surrounding media and subjected to magnetic field are of recent interest. This paper develops an analytical approach to study the radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to magnetic field. Based on Maxwell's equations, the nonlocal differential equation of radial motion is derived in terms of radial displacement and Lorentz's force. Bessel functions are used to obtain a frequency equation. The model is justified by a good agreement between the results given by the present model and available experimental and atomic simulation data. Furthermore, the model is used to elucidate the effect of nanoparticle size, the magnetic field and the stiffness of the elastic medium on the radial breathing-mode frequencies of several nanoparticles. Our results reveal that the effects of the magnetic field and the elastic medium are significant for nanoparticle with small size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.