Abstract
<span>The energy efficiency in the debutanizer reboiler combustion can be monitored from the oxygen content of the flue gas of the reboiler. The measurement of the oxygen content can be conducted in situ using an oxygen sensor. However, soot that may appear around the sensor due to the combustion process in the debutanizer reboiler can obstruct the sensor’s function. In-situ redundancy sensors’ unavailability is a significant problem when the sensor is damaged, so measures must be made directly by workers using portable devices. On the other hand, worker safety is a primary concern when working in high-risk work areas. In this paper, we propose a software-based measurement or soft sensor to overcome the problems. The radial basis function network model makes soft sensors adapt to data updates because of their advantage as a universal approximator. The estimation of oxygen content with a soft sensor has been successfully carried out. The soft sensor generates an estimated mean square error of 0.216% with a standard deviation of 0.0242%. Stochastics gradient descent algorithm with momentum acceleration and dimension reduction using principal component analysis successfully improves the soft sensors’ performance.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.