Abstract

In this work, an adaptive dynamic surface control scheme is studied for a class of nonlinear systems with unknown functions and unknown non-symmetric dead-zone nonlinearity. The unknown asymmetric dead-zone is described as a combination of a linear term and a disturbance-like term. Radial basis function neural networks (RBFNNs) are used in the online approximation of unknown functions and disturbance-like term of the dead-zone model and adaptive laws are designed to adjust the weights of network. Using the RBFNN-based model, the dead-zone model and the dynamic surface control (DSC) technique, the adaptive control scheme is developed for uncertain nonlinear systems with dead-zone nonlinearity. The proposed scheme eliminates the ‘explosion of complexity’ problem and presents a singular-free adaptive DSC control scheme. Also, it does not require any knowledge about unknown terms and the dead-zone nonlinearity. Simulation results are provided to demonstrate the performance and effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.