Abstract

This paper introduces a novel ensemble learning approach based on recurrent radial basis function networks (RRBFN) for time series prediction with the aim of increasing the prediction accuracy. Standing for the base learner in this ensemble, the adaptive recurrent network proposed is based on the nonlinear autoregressive with exogenous input model (NARX) and works according to a multi-step (MS) prediction regime. The ensemble learning technique combines various MSNARX-based RRBFNs which differ in the set of controlling parameters. The evaluation of the approach includes a discussion on the performance of the individual predictors and their combination

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.