Abstract

In our previous paper I (del Valle–Turbiner, 2019) a formalism was developed to study the general [Formula: see text]-dimensional radial anharmonic oscillator with potential [Formula: see text]. It was based on the Perturbation Theory (PT) in powers of [Formula: see text] (weak coupling regime) and in inverse, fractional powers of [Formula: see text] (strong coupling regime) in both [Formula: see text]-space and in [Formula: see text]-space, respectively. As a result, the Approximant was introduced — a locally-accurate uniform compact approximation of a wave function. If taken as a trial function in variational calculations, it has led to variational energies of unprecedented accuracy for cubic anharmonic oscillator. In this paper, the formalism is applied to both quartic and sextic, spherically-symmetric radial anharmonic oscillators with two term potentials [Formula: see text], [Formula: see text], respectively. It is shown that a two-parametric Approximant for quartic oscillator and a five-parametric one for sextic oscillator for the first four eigenstates used to calculate the variational energy are accurate in 8–12 figures for any [Formula: see text] and [Formula: see text], while the relative deviation of the Approximant from the exact eigenfunction is less than [Formula: see text] for any [Formula: see text].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call