Abstract
In our previous paper I (del Valle–Turbiner, 2019) a formalism was developed to study the general [Formula: see text]-dimensional radial anharmonic oscillator with potential [Formula: see text]. It was based on the Perturbation Theory (PT) in powers of [Formula: see text] (weak coupling regime) and in inverse, fractional powers of [Formula: see text] (strong coupling regime) in both [Formula: see text]-space and in [Formula: see text]-space, respectively. As a result, the Approximant was introduced — a locally-accurate uniform compact approximation of a wave function. If taken as a trial function in variational calculations, it has led to variational energies of unprecedented accuracy for cubic anharmonic oscillator. In this paper, the formalism is applied to both quartic and sextic, spherically-symmetric radial anharmonic oscillators with two term potentials [Formula: see text], [Formula: see text], respectively. It is shown that a two-parametric Approximant for quartic oscillator and a five-parametric one for sextic oscillator for the first four eigenstates used to calculate the variational energy are accurate in 8–12 figures for any [Formula: see text] and [Formula: see text], while the relative deviation of the Approximant from the exact eigenfunction is less than [Formula: see text] for any [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.