Abstract

Kohn–Sham density functional theory is an ab initio framework for electronic structure calculation that offers a basis for nonphenomenological multiscale approaches. In this work, higher-order finite element methods are applied in the context of this theory, with a particular focus on the use of nonlocal pseudopotentials. Specifically, an accurate class of pseudopotentials which are based on the generalized gradient approximation of the exchange–correlation functional with nonlinear core corrections are targeted. To this end, the suitable weak formulation of the underlying nonlinear eigenvalue problem is derived and additionally cast in a radial form. The weak forms are discretized through traditional Lagrange elements in addition to isogeometric analysis based on B-splines in order to explore alternative means of achieving faster routes to the solution of the resulting generalized eigenvalue problems with O(106–107) degrees of freedom. Numerical investigations on single atoms and larger molecules validate the computational framework where stringent accuracy requirements are met through convergence at optimal rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.