Abstract

Let us say that a function denned in the open unit disk D has the Montel property if the set of those points eiθ on the unit circle C where the radial limit exists coincides with the set where the angular limit exists. By a classical theorem of Montel (4), every bounded holomorphic function has this property. Meromorphic functions omitting at least three values and, more generally, the normal functions recently introduced by Lehto and Virtanen (3) also enjoy the Montel property (also see 1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.