Abstract

This paper presents a design optimization approach to minimize the volume of a radial Active Magnetic Bearing (AMB) by comparing Genetic Algorithm (GA) and Pattern Search (PS) methods. The flexible rotor dynamic analysis is performed to determine AMBs dynamic load under different unbalance cases. Preliminary design parameters are generated and results are compared with optimization results, showing around 35% reduction in volume. The PS method resulted a bigger diameter but shorter bearing length compared with GA. Nevertheless, GA generated a thicker AMB with reduced external diameter. All designs (PD, PS and GA) satisfied design constraints as determined by rotor bearing dynamics while keeping the same bearing load capacity, also validating the PD methodology as a prototyping alternative to optimization strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.