Abstract

Immune checkpoint therapies (ICT) have achieved unprecedented efficacy in multiple cancer treatments, but are still limited by low clinical response rates. Identification of immunogenic cell death (ICD)-inducing drugs that can induce tumor cell immunogenicity and reprogram the tumor microenvironment is an attractive approach to enhance antitumor immunity. In the present study, Raddeanin A (RA), an oleanane class triterpenoid saponin isolated from Anemone raddeana Regel, is uncovered as a potent ICD inducer through an ICD reporter assay combined with a T cell activation assay. RA significantly increases high-mobility group box 1 release in tumor cells and promotes dendritic cell (DC) maturation and CD8+ T cell activation for tumor control. Mechanistically, RA directly binds to transactive responsive DNA-binding protein 43 (TDP-43) and induces TDP-43 localization to mitochondria and mtDNA leakage, leading to cyclic GMP-AMP synthase/stimulator of interferon gene-dependent upregulation of nuclear factor κB and type I interferon signaling, thereby potentiating the DC-mediated antigen cross-presentation and T cell activation. Moreover, combining RA with anti-programmed death 1 antibody effectively enhances the efficacy of ICT in animals. These findings highlight the importance of TDP-43 in ICD drug-induced antitumor immunity and reveal a potential chemo-immunotherapeutic role of RA in enhancing the efficacy of cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call