Abstract
AbstractSatellite radar interferometry (SRI) is used to provide new information on grounding zones in areas of the eastern Ross Ice Shelf and the Filchner Ice Shelf, Antarctica. At the times of the RADARSAT SRI passes, separated by 24 days, a tidal model predicts a change in vertical displacement of the freely floating ice of >1 m in both areas. The change in vertical position occurs over a 5–10 km flexure zone adjacent to the grounding line and would lead to a relatively high interferometric phase fringe rate. This was observed in some areas, and suitable imagery has been used to map the grounding-zone position to an estimated accuracy of 1–2 km. Results for the ice-plain area upstream of the Crary Ice Rise are consistent with the tidal model and improve the previous grounding-line estimates based on field surveys and Système Probatoire pour l’Observation de la Terre (SPOT) data. The results support the suggestion of increased ice grounding in this area, and show that a sub-ice-shelf water channel around the southern end of the Crary Ice Rise is unlikely. Results for the Filchner Ice Shelf also show that existing maps of the grounding zone can be refined. In particular, we identify a large ice rise close to the mouth of the Bailey Ice Stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.