Abstract

Radargrammetry is a powerful tool to construct digital surface models (DSMs) especially in heavily vegetated and mountainous areas where SAR interferometry (InSAR) technology suffers from decorrelation problems. In radargrammetry, the most challenging step is to produce an accurate disparity map through massive image matching, from which terrain height information can be derived using a rigorous sensor orientation model. However, precise stereoscopic SAR (StereoSAR) image matching is a very difficult task in mountainous areas due to the presence of speckle noise and dissimilar geometric/radiometric distortions. In this article, an adaptive-window least squares matching (AW-LSM) approach with an enhanced epipolar geometric constraint is proposed to robustly identify homologous points after compensation for radiometric discrepancies and geometric distortions. The matching procedure consists of two stages. In the first stage, the right image is re-projected into the left image space to generate epipolar images using rigorous imaging geometries enhanced with elevation information extracted from the prior DEM data e.g. SRTM DEM instead of the mean height of the mapped area. Consequently, the dissimilarities in geometric distortions between the left and right images are largely reduced, and the residual disparity corresponds to the height difference between true ground surface and the prior DEM. In the second stage, massive per-pixel matching between StereoSAR epipolar images identifies the residual disparity. To ensure the reliability and accuracy of the matching results, we develop an iterative matching scheme in which the classic cross correlation matching is used to obtain initial results, followed by the least squares matching (LSM) to refine the matching results. An adaptively resizing search window strategy is adopted during the dense matching step to help find right matching points. The feasibility and effectiveness of the proposed approach is demonstrated using Stripmap and Spotlight mode TerraSAR-X stereo data pairs covering Mount Song in central China. Experimental results show that the proposed method can provide a robust and effective matching tool for radargrammetry in mountainous areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.