Abstract

The radar-centric terahertz integrated sensing and communication (THz-ISAC) is identified as a significant application in future wireless access networks. Up to date, previously reported demonstrations regarding radar sensing performance lack sufficient support in a complex environment with a strong target masking effect. This work tacks this problem by proposing a radar-centric waveform combining linear frequency modulation (LFM) waveform and phase shift keying (PSK). We first derive sensing metrics of the LFM-PSK waveform through theoretical analysis, including range resolution, peak sidelobe ratio (PSLR), and Cramér-Rao lower bound (CRLB). Then a proof-of-concept experiment on a photonics-assisted integrated sensing and communication (ISAC) system operating at 330 with 18 GHz bandwidth is conducted to verify the performance of the proposed LFM-PSK waveform. In the experiment, the proposed waveform can reach a PSLR of up to 20.9 dB and a range resolution of 1.3 cm, simultaneously accommodating a data transmission of 6 Gbit/s. In addition, the effect of embedding symbols on sensing metrics is also discussed, and by comparing the range solution and PSLR with various data rates, around <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula> 6 dB gain in the PSLR without any deterioration of range resolution is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.