Abstract

AbstractWe present 1 and 100 MHz ground-based radar data from the onset region of Rutford Ice Stream, West Antarctica, which indicate the form and internal structure of isochrones. In the flow-parallel lines, modelled isochrone patterns reproduce the gross pattern of the imaged near-surface layers, assuming steady-state flow velocity from GPS records and the current accumulation rate for the last 200 years. We interpret this as indicating overall stability in flow in the onset region of Rutford Ice Stream throughout this period. However, in the cross-flow lines some local variability in accumulation is seen in areas close to the ice-stream margin where a number of tributaries converge towards the ice-stream onset zone. Episodic surface lowering events are observed followed by rapid fill episodes. The fill events indicate deposition towards the northwest, most likely generated by storm winds, which blow at an oblique angle to ice flow. More problematic is explaining the generation of episodic surface lowering in this area. We speculate this may be due to: changing ice-flow direction in the complex tributary area of the onset zone; a change in basal sediments or sedimentary landforms; a change in basal melt rates or water supply; or episodic lake drainage events in the fjord systems of the Ellsworth Subglacial Highlands. The study highlights the difficulty of assessing flow stability in the complex onset regions of West Antarctic ice streams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.