Abstract

Abstract Identifying radar signatures indicative of damaging surface winds produced by convection remains a challenge for operational meteorologists, especially within environments characterized by strong low-level static stability and convection for which inflow is presumably entirely above the planetary boundary layer. Numerical model simulations suggest the most prevalent method through which elevated convection generates damaging surface winds is via “up-down” trajectories, where a near-surface stable layer is dynamically lifted and then dropped with little to no connection to momentum associated with the elevated convection itself. Recently, a number of unique convective episodes during which damaging surface winds were produced by apparently elevated convection coincident with mesoscale gravity waves were identified and cataloged for study. A novel radar signature indicative of damaging surface winds produced by elevated convection is introduced through six representative cases. One case is then explored further via a high-resolution model simulation and related to the conceptual model of “up-down” trajectories. Understanding the processes responsible for, and radar signature indicative of, damaging surface winds produced by gravity-wave coincident convection will help operational forecasters identify and ultimately warn for a previously underappreciated phenomenon that poses a threat to lives and property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call