Abstract

The mechanism of the resonance (Bragg) scattering of microwaves by gravity-capillary waves (GCWs) is checked experimentally. Resonant regularities of backscattered signal intensity are obtained as functions of frequency and GCW propagation direction. It is shown that the width of the resonance curves is determined by the width of the directivity pattern of the scatterometer’s antenna. The excitation of the GCW second harmonic and the spatial structure of the wave field at the GCW doubled frequency are investigated. The ratio of the amplitudes of the free wave and forced harmonic that originated during excitation of the primary wave is determined. The resonance curve is obtained for the second-order scattering of radio waves (on forced harmonics and free GCWs). The correction to the backscattering cross section is investigated in the second order of smallness relative to the Bragg term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.