Abstract

In actual condition, array elements deficiency or transmission errors lead to incomplete data, which is called sparse aperture (SA) data. In inverse synthetic aperture radar (ISAR) imaging, this large-gaped data produces poor-quality ISAR images when using traditional range–Doppler algorithm. Recently, imaging algorithms based on compressed sensing (CS) theory alleviate this problem effectively because CS theory indicates that sparse signal can be reconstructed from incomplete measurements. However, the basis mismatch problem in CS-based algorithms may degrade the ISAR image. In this study, a reweighted atomic-norm minimisation (ANM) (RAM)-based imaging method is proposed. RAM is a gridless sparse method, which can enhance sparsity and resolution. RAM formulates an optimisation problem and iteratively carries out ANM with a sound reweighting strategy. By reformulating the RAM as a semi-definite programme, the echoes with full aperture (FA) are reconstructed from SA data. After that, ISAR imaging with the reconstructed FA data is achieved via the conventional azimuth compression method. Simulated and real data results demonstrate the effectiveness and superiority of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call