Abstract

Surface radar observations near Niamey, Niger, during the African Monsoon Multidisciplinary Analyses (AMMA) campaign in 2006 documented the structure, motion, and precipitation of cloud systems during the monsoon season. These unique observations for that part of the Sahel were combined with satellite rain estimates and infrared satellite imagery to study the diurnal cycle of rainfall in Niamey, Niger. This study confirms the bimodal structure of the diurnal rainfall cycle in Niamey during AMMA, seen by previous studies of West African rainfall. Radar analysis of squall line mesoscale convective systems (SLMCS) and non‐MCS isolated convection clearly demonstrated that the nocturnal maximum was associated with the observed arrival time of westward propagating SLMCS. Satellite imagery suggested that these SLMCS formed in elevated terrain to the east of Niamey the prior afternoon. Radar observations showed that local isolated convection produced the smaller afternoon maximum. Early in the monsoon season, locally generated convection produced an afternoon diurnal rainfall maximum that was delayed by several hours compared to midseason when African easterly wave (AEW) activity was much greater. We suggest that the observed greater mean convective inhibition early in the season, perhaps tied to the absence of large‐scale forcing from AEW, played a role in the delayed initiation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.