Abstract
Human identification is crucial in various applications, including terrorist attack preventing, criminal seeking, defence and so on. Traditional human identification methods are usually based on vision, biological features, radio-frequency identification cards and so on. In this study, the authors propose an identification method based on radar micro-Doppler signatures using deep convolutional neural networks (DCNNs) for the first time, which can identify human in non-contact, remote and no lighting status. They employ a K-band Doppler radar to acquire the raw signals due to its stationary clutter rejection and movement detection ability as well as its short wavelength which can generate larger Doppler shift. Then short-time Fourier transform is applied to the raw signals to characterise micro-Doppler signatures. They adopt the DCNNs to deal with the spectrograms for human identification problem. The DCNNs can learn the necessary features and classification conditions from raw micro-Doppler spectrograms without employing any explicit features. While the traditional supervised learning techniques relying on the extracted features require domain knowledge of each problem. It is shown that this method can achieve average accuracy ∼97.1% for 4 people, 90.9% for 6 people, 89.1% for 8 people, 85.6% for 10 people, 77.4% for 12 people, 72.6% for 16 people and 68.9% for 20 people.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IET Radar, Sonar & Navigation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.